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CONTACT PROBLEMS OF THE MECHANICS OF BODIES WITH ACCRETION* 

N.KH. ARUTYUNYAN and A.V. MANZHIROV 

Contact problems of the mechanics of bodies with accretion are studied. 
A general formulation of the mixed problem is given for a viscoelastic 
ageing body during its continuous piecewise accretion. Complete systems 
of equations of the mixed problem are given in time intervals from the 
onset of loading to the onset of accretion, from the onset of accretion 
to the end of accretion, and beyond it. 

The characteristic feature of the basic relations in the case of a 
body with continuous accretion is the use not of the usual equations of 
compatibility of the deformations and the Cauchy relations, but of their 
analogues in the rates of change of the corresponding quantities /l-3/. 
Moreover, the given previous histories of the deformation tensor of the 
accruing elements form, at the instant of attachment, specific initial 
and boundary conditions /2/ on the accruing surface. In particular, the 
total stress tensor associated with external loads and characterizing the 
tightness of attachment of the accruing elements is determined at the 
accruing surface /2, 3/. The instant of attachment of the new elements 
to the main body represents an important characteristic of the process. 
The set of instants of attachment completely determines the configuration 
of the accruing body at any instant of time. Equations of state of the 
theory of creep of the inhomogeneously ageing bodies are used /4, 5/. The 
equations reflect the fundamental specific features of the accretion process 
where the times of preparation and onset of loading play an important part. 

A method of solving the mixed and initial-boundary value problems is 
given. Contact problems for a wedge under various methods of accretion 
are considered. Integral equations are derived and their solutions 
constructed. Numerical solutions of the contact problems for a wedge 
with accretion are given for the case when the influx of matter from out- 
side results in increasing the wedge angle, and for an accruing quarter- 
plane. Qualitative and quantitative effects are discussed, especially 
the influence of the method and rate of accretion on the contact character- 
istics. 

1. Formulation and solution of the mixed problem for an ageing, viscoelastic 
body with accretion. Let a homogeneous, viscoelastic ageing body manufactured at the 
instant t = 0. occupy the region && with surface So, and be stress-free up to the instant 

*Prikl.Matem.!fekhan.,53,1,145-158,1989 
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‘co of loading. From the instant of loading onwards, four types of boundary conditions are 
specified, in the general case, on the surface of the body: on S, (t) we specify the surface 
forces, and a stationary segment s* C s1 (t) of the surface exists on which the surface 

forces are equal to zero, on S, (4 we specify the displacements, on S, (0 the normal dis- 
placements and tangential forces, and on S,(t) the normal forces and tangential displacements, 

The segments of the surface on which different boundary conditions are specified do not inter- 
sect each other and together they occupy the whole surface of the body. The dependence of Sj 

on time t takes into account the possibility of motion of the lines on which the boundary con- 

ditions change, over the surface So (motion of loads, stamps, etc.). If the surface of the 

body is not closed, then the behaviour of the stresses or displacements at infinityisspecified. 

At the instant 212 TO continuous accretion begins of the body with the elements made 

at the same time as the body. During the process of growth the body occupies the region 

Q (t) with surface S(t). The surface of accretion S*(t)(S*(t,)= S*) moves in space, and 

during this process the segments S;(t) (i = 1,....4) on which the boundary conditions are 

specified may change as the stationary surface is loaded along the freshly formed part of the 

body /2/. We shall assume that the total stress tensor specified at the surface of accretion 

is coordinated with the zero surface forces on S* (t), and the instant of application of the 

load to the accruing elements coincides with the instant of their application to the main body. 

The body ceases to grow at the instant zz> or, and from this time onwards four types 

of boundary conditions are specified at the surface S, = S (4 of the body occupying the 

region Q, = Q(T,) on the segments si Ct). A segment with specified zero surface forces 

need not exist, and the surface S,* = S*(r,) may be loaded. 

In what follows, we shall consider slow processes such that the inertial terms in the 

equations of equilibrium can be neglected. We assume that the mass forces are equal to zero. 

We shall study the stress-deformation state of a homogeneous aqeinq viscoelastic body 

over the time interval tE [z,,z,].. We have the following boundary value problem: 

v.o=o (1.1) 

x E As, (t): Il.0 = PO, x E s* c s, (t): 11.0 = 0 

x E s, (1): II = u. 

xES,(t): nn.u =ul. 11.u -n+a.nn =pl 

x E S,(t): necr.nn = pz, u - nn.u = u2 

e = ‘i, [Vu + (VU)Tl 

u = E (1 + Y)-’ (I + N (zo, t)) IE + v (1 - 2v)-‘1, (E) El 
(I - L (“a, t)) = (I + N (~0, t))-’ 

L (~0, t) f (t) = i f(z) K (t, 7) dT 
1. 

K (t, T) = E (T) (a/c%) IE-’ (T) + C (t, z)l 

Mere U, e7 U9 Pi and ui are the stress and strain tensors, the displacement vector, 

specified vectors of surface forces and displacements (the arguments x (the radius vector 

of a point of the body) and t (time) are omitted), n is the unit vector normal to the surface 

of the body, E = E (t) is the modulus of instantaneous tensile strain, 11 (s) is the first 

invariant of the strain tensor, E is a unit tensor, c (t, 4 is the measure of tensile 

creep, I is an identity operator, V is the de1 operator and Poisson's ratios of the 

instantaneous and creep strain are identical and are equal to V. 

Since the de1 operator and the operator (I - L (% t)) are commutative, we can assume that 

Go = (I - L (TO. t))aE_', and transform the boundary value problem (1.1) to the following form 

more suitable for studying and constructing the solution: 

V.OO =o 

x E S, (t): n.0’ = (I - L (to. t)) poE-’ = p” 

x E s* c s, (t): n-u0 = 0; x E s, (t): u = Ilo 
x E ss (t): nn.u = ul, n *ISO - n .o’.nn = (I - L (rO, t)). 

p& = PI0 

x E s4 (t): n-o-nn = (I - L (to, t)) I)&’ = pzo, u - nn- 

” = Cl* 

e = ‘i, [Vu + (VU)Tl 

(1.2) 

d = (1 + Y)-’ Ie + v (1 - 2~)~‘I, (e) El 

Solving (1.21, we return to the true stresses by means of the formula (R (t, Z) is a 

resolvent of the kernel K (t,~)) 
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a (x, t) = E (t) fo” (x, t) + f u0 (x, T) R (t, t) dd 
z. 

(1.3) 

Let us now consider directly the process of accretion of the main body (rr < t < T2). The 
mixed initial-boundary value problem for a growing body has the form 

V.a=O 

x E Sl (t): n-u = po; x E S, (t): u = u. 

X E S,(t): nna = uI, n.u --n.ci.nn = p1 

X CZ S,(t): n+r.nn = pz, u -nn.u = ug 

x E s* (t): CJ = o*, 1 = 7*(x) 

E' = '/z [Vu. + (Vu')71 

0 = E (1 + VI-' (1 + N (~0 (x), t)) [e + v (1 - 2v)-1 I, (c)E] 

(1.4) 

Here a dot denotes differentiation with respect to time t, 7*(x) is the instant of 
attachment to the body oftheelement characterized by the radius vector x, the operator 

(I - L (%I (x)9 t)) and its inverse (I + N (TO (x), t)) are obtained from (1.1) by replacing To 
by 7O (x), a* = u* (x) is the total stress tensor defined on s* 0) and satisfying the con- 
dition 

xGS*(t): n.o*=O (T1<t<T2) (1.5) 

Relations (1.4) show that the process of accretion of the main body with new elements 
leads, generally, to the defining relations containing discontinuities at the boundary between 
the main body and its accrued parts. Transforming the initial-boundary value problem directly 
to the boundary value problem in terms of the rates of change of the corresponding quantities 
given in /2, 3/ leads, in this case, to considerable mathematical difficulties. 

Let us investigate this approach. We shall write the equation of the surfaceofaccretion 
s* (t) at t = r1 (S* (ZJ = S*) in the form P = P (x) = 0 (x E S*) where P < 0 when x E Q, 

and P>O when xEQ(t)\Q@. We shall assume that P is a fairly continuous function such 
that VP+0 when P =O (i.e. there are no singularities at the surface S* ). We introduce 
the characteristic function 6 (P) equal to unity when P>O and to zero when 
p<o /6/. We can now write the operator T = (I -L (T" (x), t)) in the form 

Tj (t) = 0 -L (To (x), t)) f (t) - [I - 0 (P)J L' (To% T1) f (t) 

t3 (4 = tz i- B (P) [t* (x) - %,I, x E s*: r* (x) = a, 

It can be shown that TV .aE-’ = V .ToEwl, if condition (1.5) holds and 

xES*: 11.s =o (70<;<zJ (1.6) 

Let us write (I'= T&F. Then 5(P) is a generalized function on a smooth surface and 
represents the analogue of the Dirac function /6, 71, V?"(x)=8 (P)&*(x) 

V ~(1' = TV.crE-1 i_ fl (P)Vt+ (~).a’ (x)E-’ (z* (x))K (t, T* (x)) -I- 
6 (P)VP.Lf (to, T,)oE-’ 

The second term of this relation is equal to zero: by virtue of the definition of e(P) 
when x=%3, and by virtue of (1.5) when x=Q(t)\% (we recall that the direction of 
VT* (I) is the same as the normal to the accretion surface S* (t) /2, J/1. The third term is 
equal to zero by virtue of (1.6)‘ since the direction of VP is the same when XEP, as 
the normal to S*. Conditions (1.5) and (1.6) represent the sufficient conditions for the 
commutativity of the operators T and the divergence operator on the set of tensor-valued 
functions defined in the region hl(t),and have the following mechanical meaning: the surface of 
the initial solid towards which the 
process of accretion begins, nor is 

Let the operator T act on the 
divided them by J?. Then 

V*aO =o 

x 63 S, (1): 

x E s, (t): 

mass flux is directed, is not placed under load until the 
the accruing surface under load during its growth. 
expressions from (1.4) containing U, having previously 

(1.7) 

n.8 = Tp, = pa; x E IsI (t): u = uo 

nn.u = ul, nd - nd.nn = Tp, = plo 
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x E S, (t): n4.n = Tp, = pzo, u - m-u = ~2 
x E S* (9: (TO = #* = o*E-1, n.u* = 0, t = Z* (x) 

e’ = I/, lvom -k (VU’)Tl 
a” = (1 + vf-1 [e + v (i--A-’ I, (e) Ef 

Relations (1.7) represent an initial-boundary value problem with the operator stresses 

so, whose defining relations containno discontinuities. 

Let us transform the initial-boundary value problem (1.7) to the boundary value problem 
for the rates of uO,e and u. To do this we differentiate with respect tot theequil.ibrium 

equations, the conditions on S1 (t) (i = 1, . . ., 4), and equation of state, We obtain the bound- 
ary condition s*(t) by applying the divergence operator to initial-boundary condition 

so (x,x* (x)) = o"* (x) (see also /I?/, in which case &.# I V .&* 1 VT* (x) 1 -l (x E S* (t)). We note 
that 

V.u"* = V.(o* (x) E-1 (z* (x))) = v.a* (x) E-l (z* (x)) - 
Vz* (~).a* (x) E-$ (v" (x))E (T* (x)) 

where the second term is equal to zero by virtue of condition (1.5). Finally we obtain 

x E S, (t): n d’ = p” = Gp,, x E s, (t): u’ = ,I@- 

x E s, (t): nn.u’ = U1, n*u 0. - n.o”.m z plo’ = Gpl 

x E s, (t): nd’.nll = pzO’ = Gp,, u’ - nn*u’ = ug’ 

x E s* (tf: nd’ = v *u*E-’ 1 v-r* j-1, t = z* (x) 

E’ = vrt ml‘ + (VU’)TI 

U '* = (1 + v)-' [e' + Y (1 - 2~)~~ I, (e') El 

f’ P) f 
Gf (t) = E -i- s - t dr + f (T,, (x)) a’ “‘a:” @)) af(t) acq T) 

at at 
?.(I) 

Thus the initial-boundary value problem of the accretion of a viscoelastic solid with 

ageing fl.4) reduces to the boundary value problem (1.8) fox the rates of displacement u', 

strain E' and operator stresses 0" where the time t is a parameter, We note that the 

boundary value problems (X.2) and (1.8) axe mathematically equivalent, since the boundary 

conditions on S,(t) and s*(t) in problem (1.8) are identical, i.e., just as in theproblem 

with a fixed boundary only four types of boundary conditions are specified on the surface. 

After solving (1.8) we can find the stresses and displacements in a growing solid, for 

z1 < t < 'Ca'r from the formulas 

u (x, t) = u (x, z,) + s u’ (x, T) dT 
r, 

In deriving f1.9) we have used relations of the form 
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inverses of the Volterra operators, and the known information concerning the stresses and 

displacements at TO< t< r1 obtained in the previous stage. The initial values of the dis- 

placements in the growing part of the body u(x,T*(x)) were assumed to be equal to zero /2, 3/. 

Relations (1.8) and (1.9) show that the stress-strain state of a growing viscoelastic 

body is affected by the whole history of its loading and growth. Moreover, these relations 

can be usedto find the loading modes for which the process of accretion will not significantly 

affectthe state of initial body, and the accrued part will be practically undeformed. Indeed, 

if we assume that only the surface of initial body is loaded, the forces are stationary, the 

growth process does not produce any tension and the time at which accretion begins is much 

later than the onset of loading, then using the property of limited creep of a viscoelastic 

material limaC(t,r)/8t = 0 we arrive, using (1.8) and (1.91, at the conclusion formulated 

above. We'zach the same conclusions by analysing the mode of loading in which the forces 

remain constant for a long time before the onset of growth, irrespective of their previous 

changes (we assume that having reached steady-state values, the forces no longer change). 

The effects discussed here have a clear mechanical meaning. Under the conditions of 

limited creep a viscoelastic body acted upon by stationary forces will practically cease to 

deform. The subsequent accretion of the unstressed elements leads to a situationinwhich the 

interaction between the initial body and the accrued parts becomes insignificant. 

Let us now suppose that the growth of the body stops at the instant T*. The body 
occupies at this instant the region 9, with surface S1 on which four types of boundary 
conditions are specified, and S* (r,) = S,* c S1 (t) (i = 1, . . ., 4). In this case the boundary 

value problem has the form (1.4) where we have no initial-boundary condition on S* (t) and 
z* (x) = z, when x E S,* (t > 2,). After the transformations analogous to those carried out 
above for the initial boundary value problem of accretion, the boundary value for determining 

the stress-deformation state after the termination of the growth, takes the form (1.8) in 
which we omitthecondition at the growing surface. The stresses and displacements are found 
in this case from the formulas 

(1.10) 

u(X,t)=U(X,~*)+SU.(X, T)dT 
‘I, 

Note 1. Using the method proposed above, we can study the piecewise continuous process 
of growth of a viscoelastic body with ageing, with any number of starts and stops during the 
growth process. The areas of the surface of the body on which the matter accrues, should not 

become loaded. The growth surface must also be load-free during the accretion process. If 
the accretion continues on some segment of this surface after the process has stopped, this 

segment must also remain load-free. The problem with n instants of the onset of accretion 
(and therefore with n terminations), can be reduced to the study of 211+ i problems of the 
same type when the time is a parameter and the stress-strain state of the viscoelastic body 

is re-established according to known formulas of the form (1.9) and (1.10). 

2. On the interaction of a viscoelastic ageing wedge with a smooth rigid 
stamp with side accretion, Consider a homogeneous, ageing wedge with aperture angle of 
a,, constructed at the zero instant (Fig.1). At the instant 'co a smooth rigid stamp with 
foundation described by the function g(r), begins to imbed into one of the faces of the 
wedge over the segment a< r< b. A force P(t) and moment h“ (1) act on the stamp, with 
eccentricity equal to e(t). The other face of the wedge is stress-free. 

The load-free face of the wedge at the instant rr begins to accrue non-stressed elements, 
sothatthe opening angle a(t) of the wedge changes with time. We shall call the accretion 
following this rule side accretion. At the instant r2 the wedge ceases to grow, its aperture 
angle up to this instant is equal to a, <2n, and the fact accruing the matter is stress-free 
even when t> t2. 

We shall assume that the accruing elements are fabricated at the same time as the starting 

body, and the displacements of the point of the wedge tend to zero as r--too. The wege is 
under the conditions of plane deformation. 
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Let us replace the stamp by a normal distributed load g(r, t) acting over the same segment. 
Using Sect.1, we arrive at the solution of three boundary value problems: one fox bc and u 
in the interval from the instant of loading to the beginning of accretion, and (I" and u' from 
the beginning of accretion to its cessation and from cessation to any, time as long as desired. 
Using the integral Meflin transform /8/ and contour integration /9/ we obtain, after 

some reduction, a relation connecting the displacement ua (r,e, 
t)X (%<t<-(& with the operator value of the load 9" (r, t), 
and the rate of displacement ua’(r,e, t) (T&G t< % and t>~~)with 
the rate of operator loading 9" (r, 1). Equating Ile (r, 9. t) 
and qe' (r, 8, 1) at 8 == 0 and a< r< b with the displacement 
and rate of displacement of the stamp regarded as a rigid unit, 
we obtain the integral equations of the problem in the form 

! k(Plr,a,)q”(P,t)dp=~[[o(t)r-g(r)J (rO<t<~,) 
(1 (2.1) 

Fig.1 (2.2) 

(2.3) 

where m(1) is the angle of rotation of 

5 (h) = I/,n (2h + sin 2~)/(~~ - sin2 k) 

q = In (p/r), p-r = 2(1 - v2)/n 

the stamp. 
We note thattheintegral in the expression for k (p, r,h) exists only in the sense of 

generalized functions, and its regularization is determined, apart from an arbitrary functional 
concentrated at zero /6/. This implies that the displacement and the rate of displacement of 
the points of the wedge are determined , apart from an arbitrary additive function of time, 
and for this reason the right-hand sides of (2.1)-(2.3) contain no terms characterizing the 
settlingandthe rate of settling of the stamp. 

Eqs.(2.1)-(2.3) should be supplemented by conditions of equilibrium of the stamp, valid 
at any instant of time 

Two situations are possible in the contact problem in question: 1) the force and angle 
of rotation are both known, and the contact pressure and eccentricity ofthepointof appli- 
cation of the force (moment) are to be determined: 2) the force and the eccentricity (moment) 
are known. and the contact stresses and angle of rotation are to be determined. 

The first condition of (2.4) can be conveniently transformed, in 
#Co =G when XE Q, (see (1.8)) 

both cases, to the form 

s q” (p, t) dp = (I - L (z,, t)) P (t) 8-l = P” (1) (~0 Q t < zl) 

i q”‘(p. Qdp=G’P(t) @ST,) 
e 

The second condition of (2.4) has, in case 11, the form 

b 

s W(P. t) dp = M(t) + + P (t) (t > rO) 
a 

e(t) = M (t) p-1 (t) 

and in case 2) it is taken in the form 
I, 

s pq”(p~ t) dp = (I - J, (G t)) (M (t) + q P (t)) E-” 
a 

(2.5) 

(2.6) 

(2.7) 
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b 

spp"(~,t)dp=G~(M(l)+~P(t)) @>$I 
a 

Let us investigate the equation which includes (2.X)-(2.3) as special cases, with an 
additional condition of the form (2.5). We shall write them in the form 

i q (~9 t) dp = x (0 
a 

Let us approximate the factor accompanying the integrand of the kernel k(p,r, A.) 
represented in the form of a quotient (see (2.3),.etc.) by the function cthfn~-‘(h)p]p-1. The 
error of such an approximation does not exceed 15% for all pE 10,~l and O<h,< 2n, and 
in the case of n/2< h< 2x it does not exceed 5% /lo, 11/. Then, using the regularization 
of the integral /12/ 

a! 

s cthzc-'(J.)p P 
cospqdp = -1n i 04 11 2shT 1 0 

we obtain the expression for the kernel of Eq.(2.8) 

k (p, r, J.) = --In [(pW - rUb))/pt(x)I (2.9) 

Substituting (2.9) into (2.8) and differentiating the resulting expression with respect 
to r (we shall denote this operation by a prime), we obtain (see also /lo/) 

(2.10) 

Changing the variables we can reduce Eq.(2.10) to a well-known singular integralequation 
(see e.g. /13/j. 

Taking into account the additional condition (2.8), we obtain the solution of (2.101 in 
the form 

(2.11) 

In order to obtain the solution of (2.1), taking into account the additional condition 
(2.5) (z. < t Q %), we must put cp (r, t) = q’ (r, t), h = a@, x (6) = P” (0, 4 (t) - 0 (6, h’ (PI = g’ (p) 
in relation (2.11). If the angle of rotation of the stamp is given, then the operator stresses 
q" (r, 4 will be known and it will only remain tore-establish the contact stresses with the 
help of formula (1.3) and to find the eccentricity of the point of application of the force 
using relations (2.6). If the moment is known, then the expression fox q"(r, t), obtained from 
(2.11) and the first conditionof 12.7) will together form a system of equations for determining 
9" (r, tt and o (t), and after solving it we can use (1.3) to find the stresses P (r, 0. 

We obtain the solution of (2.2) with condition 12.5) h < t< %), by putting cp (r, tf = 
q’“’ (r, t), h = a (t), x (t) = G”P (t),q (t) = O’ (1), h’ (p) = 0 in (2.11) . In case 1) we find q (r, t) and 
e 0) using formulas (1.9) and (2.6) , and in case 2) we find q(r,t) and 0 (t) using the 
second conditionof (2.7) and (1.9). 

When (t>$), the solution of (2.3) and (2.51 can be formed by putting, unlike the case 
discussed above, h = a,. We find q(r,t} and e(t) or q (r, t) and 0 0). using formulas 
(1.10) instead of (1.9). 

Mote 2. In the case of numerical calculations, we must solve integrals of the type 
b 

I= 
s 

EY 
&i 

o. E - Q) (b - ff” 
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The integrals can be reduced to definite integrals containing no singularities, and the 

following formula holds: 

bv _ ,v (1 - 9) -“xdz 

Example 1. Let us consider a contact problem for a wedge, with side accretion of non- 
stressed elements. The initial aperture angle is a, = n/2, becoming a~=n at the instant of 
termination. The base of the stamp remains flat, the constant force and angle of rotation 
are specified, while the contact stresses and the eccentricity of the application of the 
force which ensure that the stamp is not misaligned, are determined. We assume that the 
growth rate is constant, in which case the instant of the onset 71 and termination 7% of 
growth completely determine the function a V) and thus the configuration of the body at any 
instant of time. We choose concrete as the material of the wedge, and change to dimensionless 
quantities using the formulas 

r* = ra-1, P* = pa-1 ) e* (P) = e (t)a-1, t* = a,-1 
Z* = TTo-1, Zl* = T,T@_', r*' = T&-l, E = ba-’ 

,+ (t’) = a (q, q* (r*, t’)- Q (r. t)E-’ (t), P* (t*) = P (t)E-” (t) a-1 

h’* (t’, z*) = K (t, T)Tg, g* (3 = g (W’, co* (t’) = 0 (t) 

(2.12) 

(henceforth we shall omit the asterisks). Assuming that the elastic characteristics are 

constant, we shall specify the following values of the functions and parameters /5, 14, 15/ 

(we note that in the case in question the solution does not depend on Poisson's ratio): 

C(t,r)=(Co+A,e -q1 - e-Y(c-v, a (t) = van (t -j- T* - Zr,)/(t, - 
TA p (0 = 1, C, = 0.5522, A, = 4, jZj = 0.31, y = 0.6, c = 9, 

0 (t) = 0, g(r) = 0, Tg = i 

Let us consider the case of a (tl = 2, T* = 10, a' (t) = n/16) and rapid (TI = 2, b = 4, a' (t) = n14) 

side accretion on the wedge. From now on the dot-dash lines in the figures will represent 

the basic characteristics during the slow growth, and dashed lines during the rapid growth 

(at a rate four times as high as that of the slow growth), and solid lines will cover the 

period from the onset of loading to the onset of accretion. 

/ 5 9 1 Y 7 t 
Fig.2 

Fig.3 

Fig.2 shows the limit distributions of contact pressures under the stamp CJ as t-+00 at 

different growth rates (dashed and dash-dot lines), and the distribution from the instant r0 

to the instant %. constant over this time interval (solid line). The distribution functions 

have singularities at the stamp edges, but in order to make the graphs easier to construct, 
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we have eliminated the region r<o!l and indicated the values of the stresses at r= 0.1 

by points. The figure also shows the dependence of the eccentricity e of the point of 

application of the force on time t. 
Fig.3 shows the variation with time of the contact stresses 41 at the left edge of the 

stamp (r= O,i) and q9 at the right edge (1.=&g) for the two processes in question. 
We see that the processes characterized by the rate of growth show substantial qualitat- 

ive and quantitative differences between each other. During the rapid growth the most intense 
change in the stresses and the eccentricity occurs in the interval t=[r~,%l and continues 
after the growth has ceased. The stresses, e.g. at the left edge, increase by a factor of 
3.5 and the eccentricity decreases by almost a half. 

When the growth is slow, the characteristics change more smoothly and, beginning at a 
certain instant of time tOz8, the stress-strain state of the body becomes practically in- 
different to the process of growth, i.e. under the conditions of limited creep the constant 
force acting on the stamp becomes exhausted and further growth or its termination does not 
alter the already established values of the stresses and the eccentricity. We note for 
comparison that in case of a slow growth the stresses at the left edge increase by a factor 
of 2.4, and the eccentricity decreases by a factor of 1.5. By studying the process of slow 
growth we also broaden our understanding of the law governing the formation of the displace- 
ment and stress fields in a growing viscoelastic body acted upon by stationary forces dis- 
cussed in Sect.1. 

Irrespective of the fact that the body has the form of a half-plane at the instant of 
termination, the distribution of contact pressuresunderthe stamp is not symmetrical at any 
t>r,, and the eccentricity of the point of application of the force is very far from zero, 
i.e. the idea of a body which has grown to a half-plane may lead directly to incommensurable 
values of the fundamental characteristics. 

Note 3. Generally speaking, we can select, from the infinite manifold of parameters of 
the process of accretion, a case when the previous history of the strain tensor of the 
accruing elements ensures the compatibility of the strains over the whole body. The contact 
characteristics in the problem for a body grown up to a half-plane will be identical, provided 
the strains are compatible, with the characteristics of the contact problem for a half-plane. 
The realization of such a process in practice however, is questionable. Besides, this case 
is degenerateinthe theory of accretion, since it leads to the equations and boundary con- 
ditions usually encountered in the mechanics of deformable solids, in a region varying with 
time. 

3. The contact problem for a translationally accruing wedge. Let US now 
consider a viscoelastic aging wedge with aperture angle O<a<n, made at the zero 
instant (plane deformation). A smooth rigid stamp begins to impress itself into it at the 
instant zO on the segment a.< x< b under the action of a force P(t) with eccentricity 

& 

of its application e 0). The base of the stamp is 
e:i) ’ P(f) described by the function g(r) and the wedge surface 

is load-freewiththeexceptionofthe segment a,< XQ b. 

+; -<ii) 

r---y< a- : a 

At the instant r1 the stress-free elements manufactured 

7 
b 1 at the same time as the wedge, begin to accrue on the 

/ m 

c 

surface. 

1' 

The free edge moves while remaining parallel 
to its initial position, and the general configuration 

\ 
of the body as a wedge with a fixed aperture angle, is 

\ preserved. We shall call such an accretion translational. 
The termination occursatthe instant ra. The process of 

Y accretion discussed here is determined by the function 
f Oh 

Fig.4 
which characterizes the distance along the I 

axis from the apex of the starting wedge to the apex of 
the accrued wedge. Clearly, f(t) = 0 
and we shall also write f (‘&-) = f~ 

when rO < t Q IY~, 
(Fig.4). 

As before, we replace the stamp by a normal distributed load f~(x,t) and change to a 
moving (r,O) coordinate system /16/. Following the procedure of Sect.2, we establish the 
relations connecting the displacements and rates of displacement with the operator loads and 
their rates. Returning to the initial fixed (5,~) coordinate system, we obtain integral 
equations of the problem in the form (in what follows, n(x,t) are the contact pressure and 
o(t) is the angle of rotation of the stamp) 

k” (E + f (t), x + f (t)) Qd (t, t) ‘% = PO’ (t) X @I-< t < %) 

(3.1) 

(3.2) 
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(3.3) 

with additional conditions of the form (2.4) where I should be replaced by z. Moreover, 
k" (5,~) = k (E, .r, a) (see (2.3) etc.). 

Two situations are also possible in the contact problem with translational accretion, 
in which we specify the force, and either the angle of rotation or the eccentricity. The 
additional condition will now transform in accordance with (2.5)-(2.7) where p will be 
replaced by 5 (when referring in Sect.3 to relations (2.5)-(2.7), we will be assuming that 
such a substitution has been made). Subsequent investigation is carriedoutbymeansofa change 
ofvariable, anapproximationofthetype (2.91, and the solution of a known singular integral 
equation which, by virtue of the additional condition imposed on the forces, has the form 
(2.11). 

Solving Eq.(3.1) with condition (2.5) (70 < t < zl) we find, putting in (2.11) 'p (r, 2) = 

9" (5, t), X (t) = P" (t). 11 (t) = 0 (1), h = o, ,X(p)= g'(g) (the prime denotes differentiation with 
respect to 5), r = X, p= 6. When the angle of rotation is specified (case l), relation (2.11) 
yields an expression for q”(x,t). After this we use formula (1.3) to obtain the distribution 
function of the contact pressures q(r, t), and we substitute it into (2.6) to obtain the 
eccentricity of the application of the force. irlhen the eccentricity is given (case 2), we 
must use the expression fox s" (r, t), the first condition of (2.7) and formula (X.3), and 
here we determine s(z,t) and the angle of rotation o(I). 

The solution of Eq.(3.2) with additional condition (2.5) (%I< t< r!& is obtained by 
putting in cp (r, t) = q’“’ (3, t), x (t) = GOP (t), @ (t) = 0’ (t), h = a, h’ (p) = 0, r = x + f (t), p = % f f (1) 
(2.11). In case 1 we determined q(s,t) and e(t) using (1.9) and (2.61, and in case 2 we 
seek q&t) and o(t) using (2.7) (ts %) and (1.9). 

The solution of (3.3) and (2.5) (t>rr) is obtained by putting in r = s-J- fix $I = % + fi 
(2.11) (the remaining functions have the same form as in case of Eq.(3.2)). The contact 
stresses, the eccentricity or angle of rotation are found in the same manner as before, but 
we use (1.10) instead of (1.9). 

Note 4. Using Sects.2 and 3, we find no fundamental difficulties when considering the 
contact problem for a wedge with complex accretion of the stressed elements. We merely note 
that any accretion during which the body retains its wedge form, can be described by a 
combination of the angular and translational method. 

Nate 5. When using numerical methods, it is sometimes more convenient to use, instead 
of formulas (1.9) and (1.101, 

u (x, 0 = u (x. -h(X)) + s u’ (x, T) dr 
cm 

we must remember, however, that relations (3.4) must be transformed in accordance with 
the case in question (direct accretion, or after the termination), since the expressions for 
the rates of operator stresses and displacements at various stages of the processareobtained 
from the solutions of different problems. 

e 

Fig.5 
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Example 2. The contact problem for an accruing quarter-plane. We shall consider the 
problem of translational growth on a quarter-plane of non-stressed elements at a constant rate 
(see also /16/). Let a constant force and zero angle of rotation be given, and let assume 
that the base of the stamp is flat. The configuration of the body at any instant of time is 
specified by the coordinate of the tip of the quarter-plane + = --f (t) tt (I) = 0 , when rD < t ( z,). 
We shall assume that the process of accretion does not stop (78 =m), i.e. in the limit the 
body becomes a half-plane, We use formulas (2.12), where we replace r,~ by z.E to change 
to dimensionless quantities, and we also put 1' (t') = f @)a-' (neglecting the asterisks). The 
elastic and rheological characteristics of the material are taken from Example 1. We shall 
also assume that the modes of loading the quarter-plane by the stamp up to the onset of 
accretion in the first and second example are identical. 

Let us determine the contact pressures and the eccentricity of the point of application 
of the force, ensuring that there is no misalignment of the stamp at different rates of 
translational accretion. We shall put P (t) = i, a = n/Z., c = 9, o(f) = 0, g(z) = 0, rl = 2, r. = 1; 1') 

slow translational accretion: f(t) = t - 2, 1' (f) = 1 (t > r,); 2*) rapid translational accretion: 
f(0=6(t-22), f'(t)=c%(t>%) (the rate of accretion f'(t) is 6 times as high as that in the 
case 1.)). 

Since in both cases the quarter-plane loaded by the stamp grows to become a half-plane 
(in the second case and in the limit as t-m), we shall also compare the side and the 
translational method of accretion from the point of view of their influence of the distribution 
of contact stresses and the eccentricity. In the graphs shownwe shall retain thenotation of 
Example 1, remembering that the methods of accretion are different and, that there is no 
termination of growth. Apart from that we have complete identity. 

Fig.5 shows the limit distribution of the contact stresses at various rates i' (0, the 
distribution from the instant rO=i to the instant r,=2, and the dependence of the eccen- 
tricity on time. 

Fig.6 shows the variation with time of the contact stresses qI at the left edge of the 
stamp (2 = 0, 1) and qa at the right edge (z= 8,9) f or slow and rapid accretion. 

We note that in case I*) the stresses, e.g. at the left edge, increase by a factor of 1.4 
and the eccentricity is reduced by a factor of 1.2. In case 2.) these relations are equal to 
2.7 and 1.5, respectively. When t=tQ= 8 and the rate of accretion is arbitrary, the process 
becomes a steady-state process and further growth of the body does not in practice affect the 
contact stresses and the eccentricity. The arguments preceding Note 3 remain valid in this 
case. 

Comparing examples 1 and 2, we find that the method of translational accretion, unlike 
side accretion, leads to a smoother change in the characteristics, and its influence on the 
situation under the stamp is weaker. When the forces are constant, a characteristic time f 
will exist independently of the rate and method of accretion, after which we can neglect the 
effect of the accretion process on the contact characteristics. 

1. 

2. 

3. 
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APPLICATION OF THE PRINCIPLE OF CHOICE TO THE PROBLEM OF 
THE INITIAL DEVELOPMENT OF SLIP LINES FROM A CORNER POINT* 

L.A. KIPNIS and G.P. CHEREPANOV 

Symmetrical problems of initial development near the corner point of the 

boundary of the body of a plastic zone modelled by two straight slip lines 
emerging from the vertex are considered under conditions of plane defor- 

mation. Functional Wiener-Hopf equations of the problems and their exact 

analytic solutions are given. The length of the slip lines and the angle 

of their inclination to the boundary are determined. The principle of 

choice is used to find the latter. According to this principle, of all 

possible directions of the development of slip lines, the direction 

realized corresponds to the maximum value of the rate of dissipation of 
energy by the body. 

The last few years have seen the publication of a number of papers 

in mechanics of fracture, dealing with problems of initial development 

within the bodies, near the concentrators, of plastic zones modelled by 

straight slip lines emerging from the vertex at some angle to the boundary 

/l-6/. Everyone of these problems reduces to a functional Wiener-Hopf 

equation, and its solution is used to establish the dependence of the 

length of the slip line on its angle of inclination to the boundary, the 
latter being a free parameter. The value of this angle at which the slip 

line is of maximum length, is taken as the unknown quantity which 

determines the direction in which the slip line develops. 
In the present paper a new, stricter approach is proposed, towards 

solving the problem of the direction in which the slip lines emerging 

from the corner point develop. The approach is based on the principle of 
-- 
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